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CHAPTER ONE 

INTRODUCTION 

Significance 

Bacterial infectious diseases cause a significant number of deaths 

worldwide every year. In the past few years, several studies discovered that 

small non-coding RNAs (sRNAs) play an emerging role in modulation of bacterial 

pathogenesis and virulence (1-4). RNAIII came into picture as the first RNA 

regulator in pathogenesis of bacteria. RNAIII regulates multiple targets in 

Staphylococcus aureus including SA-1000 mRNA, which encodes a protein 

involved in adherence and invasion of host cells (5,6). Padalon-Brauch et al. in 

2008 identified 19 novel sRNAs encoded within pathogenecity islands of 

Salmonella typhimurium and observed that these sRNAs showed induced 

expression levels in the stage of infection allowing adaptation of Salmonella to 

extreme acidic environment of the stomach. Vibrio cholerae has multiple sRNAs 

which ensure efficient colonization in the human intestine (7). In contrast, a 

recent study has identified vrrA sRNA as a negative regulator of Vibrio cholerae 

pathogenecity (2). Nevertheless, it has been found that numerous other 

infectious bacterial species including Listeria monocytogenes, Pseudomonas 

aeruginosa and Chlamydia trachomatis show sRNA dependent virulence (2,3). 

The importance of sRNA-mediated gene regulation for the virulence and 

pathogenecity of bacteria highlights that these regulation processes can be 

potential targets for the successful eradication of pathogenic bacteria. Thus, it is 
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necessary to understand bacterial sRNA-mediated regulatory processes and the 

protein components that are associated with sRNAs, to exploit these pathways 

for new anti-infectives. 

 

Roles of sRNAs in gene regulation 

Bacteria are adapted to live in diverse environmental conditions. Thus, 

they show excellent tolerance and response to extreme environmental conditions 

caused by low or high temperatures, high salinity, reactive oxygen species or 

high nutrient concentrations. The adaptation is acquired by gene acquisition, 

gene mutation or the regulation of gene expression (8-10).  

Gene expression regulation is performed at different levels and is 

governed by different factors. While protein regulators function at any level of the 

pathway, RNA regulators specifically act at transcriptional or post-transcriptional 

levels.  At the post-transcriptional level they activate or deactivate the translation 

of a particular mRNA (11,12).   

Being a part of the 5’ untranslated region (UTR) region of the mRNA 

sequence that they regulate, riboswitches can be considered as the simplest 

form of cis-acting RNA regulation (13). Riboswitches undergo structural changes 

upon binding the small metabolite ligands, such as flavin mononucleotide (FMN), 

thiamin pyrophosphate (TPP) or S-adenosylmethionine and can act as a part of 

negative or positive feedback loops. For example, the glmS riboswitch, upon 

binding its ligand glucosamine-6-phosphate, acts as a ribozyme to cleave itself 
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and inactivates glmS mRNA that codes for the glucosamine-6-phosphate 

synthase (13,14). The conformational changes include formation of hairpin 

structures that block or release the ribosome binding site (RBS) or act as 

transcriptional terminators or anti-terminators (Figure 1 A).  

The largest class of RNA regulators consists of cis-encoded or trans-

encoded sRNAs. Cis-encoded RNAs are transcribed from the same locus as the 

gene they regulate and have perfect base complementarity to their target. On the 

other hand trans-encoded RNAs are transcribed from a separate locus than their 

target gene and have imperfect base-pairing. This imperfect base-pairing allows 

some trans-encoded RNAs to regulate multiple targets which creates a web of 

regulation in the cell (11-13,15).  

MicF was identified as the first small RNA regulator that controls gene 

expression by an anti-sense mechanism in bacteria. It base-pairs with ompF 

mRNA and represses the synthesis of an outer membrane porin, OmpF. Since 

then, a significant number of sRNAs have been identified and characterized as 

post-transcriptional regulators in diverse cellular processes including virulence 

and adaptation to environmental stress (12,13,15,16). 

Interactions of sRNAs and target mRNAs result in translational repression, 

translational activation or/and degradation of the target (Figure 1B). The majority 

of regulatory small RNAs found in E.coli require the RNA binding protein Hfq to 

perform their roles in gene regulation (11,13,15-17). 
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      Translational repression           Translational ac tivation             Target degradation  

 

 

 

 

 

Figure 1:  Mechanisms of RNA-mediated gene regulation . (A)  Riboswitch-
mediated regulation. Riboswitches have two main regulatory regions; aptamer 
region (pink) and expression (yellow) platform. Upon binding the ligand to the 
aptamer region, the expression platform undergoes structural changes that act 
as transcriptional terminators or anti-terminators (Left) or block or release 
ribosome binding site (Right) (13). (B) Regulatory outcomes brought by sRNA-
mRNA interactions. Bacterial sRNAs are involved in translational repression, 
activation or/and target degradation (18,19).     
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Role of Hfq in post-transcriptional gene expression  regulation  

Hfq was initially identified as a host factor required for Qβ RNA 

bacteriophage replication (20). Several studies have shown that Hfq plays a 

prominent role as a post-transcriptional regulator by facilitating the base-pairng 

between sRNA and mRNA (11,20,21). Its structural homology led it to be 

categorized as a member of the Sm/Lsm protein family (20). Eukaryotic Sm and 

Lsm proteins are heterohexamers and are involved in RNA metabolism including 

mRNA splicing (22). In contrast, Hfq is a homohexameric protein containing 6 

copies of an 11 kDa polypeptide forming a heat stable, doughnut shaped 

structure (4,20). It binds to sRNAs and target mRNAs and shows similar RNA 

binding specificities to Sm/Lsm proteins (4,20,22,23).  

Bacteria containing Hfq mutations show decreased growth rates, 

increased sensitivity to stress conditions, reduced virulence and irregular cell 

shapes indicating the importance of this global regulator for the fitness of the 

bacterial cell (24). Recent studies showed that Hfq is essential for virulence and 

environmental adaptation of many pathogenic bacteria (25-27). Hfq plays an 

important role in Salmonella typimurium gene regulation by interacting with 

nearly 50% of sRNAs and 20% of mRNAs including mRNAs that code for 

pathogenicity islands (25,27). Furthermore, it has been found that Hfq is a critical 

component of colonization for uropathogenic  E. coli (UTI89) and  the absence of 

Hfq causes reduction in microcolony formation in the bladder and kidneys (26).  
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Although Hfq is a central player in sRNA-mediated gene regulation, how it 

facilitates these RNA interactions is yet to be discovered. A number of findings 

suggest that Hfq binds sRNA and target mRNA simultaneously using two 

independent binding faces (Figure 2) (21,28). The proximal face interacts with 

sRNA by binding to single-stranded A/U rich regions while both faces contact the 

mRNA. The distal face preferentially binds to ARN tracts (where A is an adenine, 

R is a purine and N is any nucleotide) on mRNA (21,29). It has been found that 

Hfq increases sRNA interaction with their target mRNAs by bringing both RNAs 

together (29,30). Table 1 shows some of the examples of sRNA-mRNA 

interactions which are formed under stress conditions in an Hfq dependent 

manner (13,15,16). sRNAs that are relevant for the present study are marked 

with asterisks. The regulatory roles of these sRNAs are discussed below. 

 

 

 

 

 

 

 

 

Figure 2:  Hfq-RNA interactions . Hfq proximal face interacts with sRNA while 
distal face interacts with mRNA. Crystal structure shows distal face bound to A6 
and proximal face bound to AU5G (21). 

Proximal face 

Distal face 
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Table 1: Examples of sRNA-mRNA interactions formed under stress conditions. 

Stress condition sRNA Target 
mRNA 

Regulatory outcome 

Cold shock RprA rpoS Translational activation 
DsrA* rpoS Translational activation 

hnS Translational repression 
Oxidative stress OxyS* fhlA Translational repression 

rpoS Translational repression 
Nutrient levels MicC ompC Translational repression 

GcvB oppA/dppA Translational repression 
Heat shock/toxins MicF ompF Translational repression 
Low glucose  Spot42 galETKM Translational repression 
Sugar stress SgrS* ptsG mRNA degradation 
Low iron RyhB  sodB mRNA degradation 

 sdhCDAB mRNA degradation 
 

OxyS-Hfq regulates gene expression under oxidative stress 

Reactive oxygen species such as hydrogen peroxide, superoxide and 

hydroxyl ions are produced continuously inside the cells as by-products of 

cellular reactions. These reactive oxygen species can initiate a series of radical 

reactions, which can damage cellular macromolecules. Lipids, proteins and DNA 

are major targets of reactive oxygen radicals. The broad spectrum of damage 

includes amino acid adduct formation by oxidation of metal binding sites in 

enzymes, biomolecule fragmentation and DNA mutations which can be fatal for 

the cells (31).  Therefore, cells have evolved a number of defense mechanisms 

including repression of certain genes, to reduce the production of reactive 

oxygen species.   

The transcriptional activator, OxyR is activated in cells stressed by 

peroxides. OxyR activates the expression of defensive proteins and regulatory 
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RNA OxyS to protect the cells against oxidative damage (32). It has been shown 

that 109 nt long OxyS untranslated RNA represses the translation of rpoS 

(encodes sigma factor σS) and fhlA (encodes a transcriptional activator of 

formate metabolism) (18,30). The base-paring of OxyS to its target fhlA mRNA, 

prevents ribosome binding to the mRNA thus it inhibits the translation of the 

protein allowing the organism to recover from the oxidative stress (11,18,30). 

 

DsrA is a multiple RNA regulator under cold shock. 

DsrA is an 85 nt long trans-acting small RNA, which is synthesized under 

cold shock and is involved in the translational activation of rpoS (Figure 1) and 

the translational repression of hns which encodes for histone-like protein, HNS 

(30). RpoS is an E.coli stationary phase sigma factor that binds to the RNA 

polymerase to initiate the transcription of many stress responsive genes which 

are stimulated by carbon starvation, low temperatures, pH changes and high 

osmolarity (33). Under normal growth conditions the rpoS 5’UTR forms a 

secondary hairpin structure that occludes the ribosome binding site (RBS); thus, 

it inhibits the translation of RpoS. During cold shock, DsrA remodels the rpoS 

inhibitory structure by base-pairing to the rpoS leader sequence. This releases 

the RBS and activates translation of the protein (34). It has been found that Hfq 

facilitates these regulatory processes by bringing the two RNAs together and 

stabilizing the final RNA-RNA complex (11,21,35). In contrast, DsrA represses 

hns mRNA by making the DsrA-hns duplex that overlaps the start codon of the 
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hns mRNA and prevents the translation of HNS (30,36). Thus, DsrA regulates 

the expression of at least two mRNAs, highlighting the complexity of the sRNA 

mediated regulatory network (11,28,30).  

 

SgrS-Hfq paring with ptsG mRNA leads to degradation of both RNAs 

In addition to translational activation and translational repression, target 

degradation is another common outcome of sRNA-mRNA interactions. SgrS is a 

small RNA that is transcribed during sugar phosphate stress, which is induced by 

the accumulation of glucose-6-phosphate (G-6-P) (11,16). Glucose or α-methyl-

glucose transports into the cells via the PtsG glucose transporter and are 

phoshorylated into glucose phosphate or α-methyl-glucose phosphate by the 

phospho transferase system (PTS). When the glycolytic pathway is disrupted or 

non-metabolizable α-methyl-glucose phosphate is present, cells undergo sugar-

phosphate stress which gives the signal to the SgrR transcriptional activator to 

synthesize SgrS small RNA (Figure 3). SgrS base pairing to ptsG mRNA leads to 

translational repression followed by the degradation of ptsG mRNA by RNase E. 

Hence, it inhibits the synthesis of the glucose transporter, PtsG, and allows cells 

to maintain sugar phosphate tolerance (16,37,38). This process is known to be 

facilitated by Hfq and it is believed that association of SgrS with RNase E takes 

place through Hfq (39). 
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Figure 3: Sugar phosphate tolerance in bacteria. Glucose or α-methyl-glucose 
transports into the cells via the PtsG glucose transporter. When the glycolytic 
pathway is disrupted or non-metabolizable α-methyl-glucose is present, cells 
undergo sugar-phosphate stress due to the accumulation of glucose phosphate 
or α-methyl-glucose phosphate. This gives the signal to the SgrR transcriptional 
activator to synthesize SgrS small RNA. SgrS base pairing to ptsG mRNA leads 
to the degradation of ptsG mRNA by RNase E. Hence, it inhibits the synthesis of 
the glucose transporter, PtsG, and allows cells to maintain sugar phosphate 
tolerance (16,37,38). 
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Hfq interacts with other proteins to mediate its re gulatory roles  

Several studies have shown that Hfq makes Hfq-RNP complexes to 

mediate its regulatory roles (11,40,41). It has been reported that Hfq interacts 

with the RNA degradation machinery and may direct the sRNA-mRNA complex 

for degradation (11,41). In support of this hypothesis, co-immunoprecipitation 

experiments have shown the existence of an Hfq-RNase E complex (41). Hfq is 

also known to interact with PAPI and PNPase to form a complex that is distinct 

from the degradosome which is involved in polyadenylation of mRNAs (42).  A 

recent paper showed that Hfq interacts with the Salmonella typhimurium 

virulence factor PhoP, a component of PhoPQ system which plays a role in 

Salmonella pathogenesis (43,44). 

An RNA affinity column approach followed by LC-MS and MALDI-TOF 

analyses identified many proteins that make direct/indirect contacts with Hfq (Lee 

and Feig unpublished data). Previous work in our lab used three small RNAs as 

bait to fish out the proteins that are in complex with Hfq. Most of them were RNA 

binding proteins which have already been shown to bind Hfq. RhlE is a DEAD-

box helicase and was identified as a protein partner in SgrS-Hfq and DsrA-Hfq 

RNP complexes where SgrS and DsrA were used as bait to hire Hfq and its 

protein partners (Figure 4). For many years, it has been assumed that Hfq 

lacking ATPase activity, requires the help of an RNA helicase to remodel the 

structured RNAs in order to facilitate base-paring between sRNA and mRNA.  
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Figure 4: Hfq-RNP complexes. An RNA affinity column approach followed by 
LC-MS and MALDI-TOF analyses identified many proteins that make 
direct/indirect contacts with Hfq. RhlE was identified as a protein partner of SgrS-
Hfq and DsrA-Hfq RNP complexes. RhlE is highlighted with a circle. 

 

DEAD-box RNA helicases are ATP energy driven motor proteins that are 

involved in RNA metabolism 

DEAD-box helicases are ATP-dependent RNA helicases stimulated by 

long or short double-stranded RNA molecules (45,46). They are involved in 

dynamic RNA metabolic processes including ribosome biogenesis, mRNA 

splicing, and mRNA decay by unwinding RNA secondary structures and 

rearranging the ribonucleoprotein complexes (47). Based on the sequence 

conservation of motifs, helicases are divided into six super families; SF1-SF6. 

SF1 and SF2 family proteins are monomers while SF3-SF6 family proteins form 

hexameric ring structures (47,48). Despite the classification into six super 
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families, all the DEAD-box RNA helicases have the same fold to form the 

conserved DEAD-box core. Thus, they exhibit two main enzymatic activities; 

RNA unwinding helicase activity and ATPase activity (49).  

Although a number of different DEAD-box RNA helicases have been 

identified in eukaryotes and prokaryotes, full-length crystal structures of most 

these are not available. MjDEAD from Methanococcus jannashii is among the 

first to be fully characterized (Figure 5).  DEAD-box helicases have nine 

conserved motifs including the Asp-Glu-Ala-Asp motif (D-E-A-D or motif II) (45-

47). Four motifs are known to be involved in ATP binding and hydrolysis, while 

four of the others are involved in RNA binding (Figure 5). Motif three sits in 

between domains IV and DEAD, and is identified as a linker domain which 

passes the conformational change induced by ATP hydrolysis to the RNA binding 

domains (46). Thus, proper coordination among motifs ensures a tight 

relationship between RNA and ATP binding sites, leading to coupled ATPase 

and helicase enzymatic activities.   

In general, RNA helicases unwind RNA duplexes either by a translocation 

based mechanism or through local strand separation. In the first mechanism, the 

helicase binds to the single-stranded 5’ or 3’ overhang of the RNA and 

translocation occurs towards the duplex in an ATP dependent manner. ATP 

binding, ATP hydrolysis, and phosphate release occur in each translocation step 

to move the protein forward (50). 
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Figure 5:  Structure of a DEAD-box helicase ( Methanococcus jannaschii). 
The protein contains two domains and nine motifs. ATP binding cleft sits between 
domain 1 and 2. Motifs Q, I, II (DEAD motif) and VI involve in ATP binding (red) 
and motifs Ia, Ib and V involve in RNA binding (blue).  Motif III (green) acts as a 
linker which passes the conformational change induced by ATP hydrolysis (47). 
This image was reconstructed with UCSF chimera using PDB ID 1HV8. 

 

Most DEAD-box RNA helicases follow the second mechanism. They load 

directly on the double stranded regions with the aid of neighboring single 

stranded regions. The loading can take place at 3’ or 5’ end of the duplex or 

internally by a yet undefined mechanism which is thought to be assisted by ATP 

binding. Upon ATP binding the enzyme assumes a high affinity RNA binding 

conformation which allows rapid dissociation of the RNA duplex. ATP hydrolysis 

weakens RNA binding and leads to dissociation of the two unwound RNA strands 

and the enzyme (50,51).  

E.coli DEAD-box helicase DbpA is an example of such helicase that 

unwinds duplex rRNAs by a process that requires ATP association and 
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hydrolysis. A recently published paper showed that ADP-Pi bound DpbA binds to 

phosphoryl transfer center-RNA and unwinds short rRNA duplexes. The 

dissociation of the duplex occurs rapidly and is followed by a slow, rate 

determining Pi release step and the dissociation of the enzyme (51). Figure 6 

shows the schematic diagram for E.coli DEAD-box helicase, DbpA action (51). 

 

RhlE is an E.coli DEAD-box RNA helicase with yet undefined role 

E.coli expresses 5 DEAD box helicases: DbpA, SrmB, RhlB, RhlE and 

CsdA. DpbA and SrmB were reported to be involved in ribosome biogenesis 

(45,46). Being the regular helicase component of the degradosome, RhlB 

participates in resolving structured RNAs and facilitating their degradation (45-

47,52). It was reported that, under certain growth conditions degradosome 

components get rearranged. For example, CsdA can replace the function of RhlB 

at low temperatures (53,54). RhlE is the least characterized among the five and 

many questions on RhlE await answers. 
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Figure 6: Mechanism of DbpA helicase action.  DbpA unwinds duplex rRNAs 
by a process that requires ATP association and hydrolysis. Upon ATP binding 
the enzyme assumes a high affinity RNA binding conformation which allows rapid 
dissociation of the RNA duplex. ATP hydrolysis weakens the RNA binding and 
leads to the dissociation of the two unwound RNA strands and the enzyme 
(Reproduced with permission from M. De La Cruz., PNAS 107(9), 2010). 
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RhlE may play a role in sRNA-mediated gene regulati on under stress conditions  

RhlE is characterized as an ATP-dependent RNA helicase. Although its 

exact function(s) or substrate(s) in vivo is not known, it was reported that, like 

CsdA, RhlE also interacts with RNase E without displacing RhlB (55). Ribosome 

analysis and primer extension assays have shown that RhlE can suppress the 

growth defects that are associated with ribosome biogenesis in SrmB mutants at 

cold temperatures (52). In addition to their role in resolving structured RNA 

molecules, recent work has suggested that the DEAD-box RNA helicases can act 

on RNP complexes to displace proteins and rearrange the RNP complexes 

(47,56). 

All the DEAD-box RNA helicases in E.coli show slow enzymatic activities 

in vitro (45). To explain this fact, it has been proposed that, these enzymes act 

on highly specific substrates in vivo and work together with other proteins to 

achieve their substrate specificity and high processivity.  

RhlE has distinct features relative to the other four DEAD box helicases. 

RhlE is reported to be the most processive enzyme in vitro (45,56). Furthermore, 

like other RNA helicases found in E.coli, RhlE does not require RNA substrates 

with 5’ or 3’ overhangs for its helicase activity (45). RhlE is able to unwind short/ 

long or blunt end duplexes.  

Considering all these facts, RhlE can be considered as a potential 

candidate for the helicase component of the ‘stress-induced degradosome’. Our 

hypothesis in this study was that RhlE and Hfq have a synergistic effect on 
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sRNA-mediated gene regulation under stress conditions. Thus, it is worthwhile to 

address the following questions.  

1. Does RhlE play a role in sRNA-mediated gene regulation?  

2. Does the deletion of rhlE make any change in the growth phenotype of   

the hfq mutants?  

3. Does RhlE interact with Hfq to mediate these regulatory outcomes?  

4. How does Hfq facilitate base pairing of structured RNAs?  

5. What is the mechanism of RhlE action? 

Hfq may recruit a protein partner, which has the ability to resolve RNA 

secondary structures (RhlE?). In order to answer the above questions, a series of 

in vivo and in vitro experiments were performed which are discussed below. 

 

Project Outline  

Our goal is to understand the effect of RhlE and Hfq on gene regulation in 

bacteria during stress responses and to characterize the role of Hfq as a 

regulator of sRNA-mRNA interactions. We hypothesized that Hfq and RhlE have 

a synergistic effect on sRNA-mediated gene regulation. To address this problem, 

a series of in vivo and in vitro experiments were carried out. To study the effect of 

RhlE and Hfq on sRNA mediated gene regulation, ∆rhlE and ∆rhlE/∆hfq 

knockout strains were constructed and their growth patterns were examined 

under different stress conditions. In a previous study, RhlE was identified as a 

protein partner of the Hfq-SgrS and Hfq-DsrA protein complexes. Co-
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immunoprecipitation was used to find the existence of possible Hfq-RhlE 

complex. In vitro ATPase assays were used to demonstrate the ability of RhlE to 

act on different sRNAs and potential mRNA substrates. The ability of Hfq to 

stimulate the ATPase activity of RhlE, with or without relevant RNAs present, 

was tested.  

In the present study, the growth curve analysis of wt, ∆rhlE, ∆hfq and 

∆rhlE/∆hfq revealed that RhlE has a role in Hfq-dependent sRNA-mediated gene 

regulation under sugar stress and oxidative stress. It was also found that OxyS 

sRNA, which is transcribed under oxidative stress, and its target fhlA mRNA 

stimulate the ATPase activity of RhlE. Furthermore, DsrA was unable to stimulate 

RhlE, suggesting that RhlE may have some degree of specificity for RNAs. 

Although Hfq was shown to stimulate the RhlE ATPase activity in the presence of 

fhlA, the present study did not identify any physical interaction between the two 

proteins. 
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CHAPTER TWO 

MATERIALS AND METHODS 

Materials 

All chemicals and reagents used were reagent grade or better. LB broth 

and LB agar was purchased from EMD Chemicals Inc. Hydrogen peroxide, NaCl, 

MgCl2, KCl, HEPES, PBS, Tris-HCl and dNTP mix were bought from Fisher 

Scientific. Glucose, NADH, phosphorenolpyruvate, pyruvate kinase, lactate 

dehydrogenase, ATP, agarose, IPTG, arabinose, triton-X and imidazole were 

purchased from Sigma. Alpha-methyl glucose was bought from Fluka. 

Transcription and PCR buffers and enzymes were purchased from NEB Biolabs. 

Hi-tap Ni2+ columns were bought from GE Healthcare. Plasmid miniprep kit and 

PCR cleanup kit were purchased from Qiagen. EDTA-free protease inhibitor 

tablet is from Roche Diagnostic and Dyna-beads are from Invirogen. Anti-v5 and 

anti-his probes were purchased from Sigma. All the primers were purchased from 

IDT. 

Media and growth conditions  

Cells were grown under aerobic conditions at 37oC (except for conditions 

where cells were induced by cold shock (30oC) or heat shock (42oC)) in LB broth. 

To induce stress conditions, media were supplemented with 0.25%, 0.5%, 0.75% 

or 1% α-methyl glucose for sugar stress, 60µM H2O2 for oxidative stress or 0.5M 

NaCl for osmotic pressure when required. Antibiotics were added at 30 µg/mL 
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kanamycin, 100 µg/mL ampicillin, 34 µg/mL chloramphenicol and/or 100 µg/mL 

streptomycin. 

 

Strains and plasmids 

All deletion mutants were derived from E.coli Top10 cells. λ Red–mediated 

recombination was used to generate single and double knockout strains 

containing deletions within hfq and rhlE genes. hfq or rhlE were replaced with 

cassettes that have kanamycin and chloramphenicol resistant genes 

respectively. Amplified FRT-cam/kan cassette using PCR primers; ISRHK01 and 

ISRHK02 (Table 2) with homologous flanking arms containing 50bp of upstream 

and downstream regions of rhlE/hfq gene were transformed into Top10 

electrocompetent cells. The insertion of the antibiotic cassettes into correct 

position was confirmed by PCR. All the knockout strains constructed for this 

study are listed in table 3.  

The rhlE gene (1365bp) was amplified using GM 30 genomic DNA as the 

template and primers ISRH01 and ISRH02 (Table 2). The PCR amplified gene 

fragment was inserted into pET28a via NdeI and HindIII restriction sites in frame 

with N-terminal His-tag (pMIS20201) (Table 4). Clones were selected by 

kanamycin resistance. Correct insertion of the gene into pET28a was confirmed 

by restriction digestions and sequencing. To express RhlE, pMIS20201 was 

transformed into BL-21(DE3).  
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For co-immunoprecipitation experiments, V5 tagged rhlE containing 

plasmid (pMISV520201) was created (Table 4). The rhlE gene was PCR 

amplified using a reverse primer IRSHV02 (Table 2) containing the coding 

sequence for V5 epitope, immediately after the last sense codon of rhlE followed 

by the stop codon. The PCR product was ligated into pBAD24 and transformed 

into ∆rhlE. Resultant strain was named as IRV 002 (Table 3). 

Table 2:  Primers used in this study. 

Primer 

name 

Target gene / Purpose Location  (respect to RhlE st art 

codon) 

ISRH01 RhlE / PCR amplification +1         +26 

                       5’ GGAACCCATATGTCTTTCGATTCTTTGGGTTTAAG 3’ 

ISRH02 RhlE / PCR amplification +1362      +1342 

                       5’ TAGCTCAAGCTTACTGCGCAGCGGCAGGTTTAC 3’ 

ISRH03 RhlE sequencing +625        +648 

                      5’ ACCTTCTCTGACGATATTAAAGC 3’ 

ISRHK01 RhlE knockout -50          0 

                      5’ TATCTCCCTGAAAACTACACCGGTAACGGTCGGGGC 
                             GGTTCGGAGTAGTTAATTAACCCTCACTAAAGGGCG 3’ 
ISRHK02 RhlE knockout +1365      +1415   

                      5’TTTTGCGTTTGTTCATCAGCCTGATGCCGGGCATAGC 
                              CCGGCATAAAAGATAATACGACTCACTATAGGGCTC 3’ 
ISRHV02 RhlE-V5 +1362      +1341 

                     5’AAGAAGAAGCTTTTAGGTGCTATCAGGCCCAGCGGGTT 
                      CGGAATCGGTTTGCCCTGCGCAGCGGGCAGGTTTACG 3’ 
Kan-Int Kanamycin/PCR 

confirmation of ∆hfq 
Internal 

                       5’ TGATATTCGGCAAGCAGGCATC 3’ 

Cam-Int Chloroamphenicol / PCR 
confirmation  of ∆rhlE 

Internal  

                      5’ TCACCGTCTTTCATTGCCATACG 3’ 
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Figure 7: Positions of the PCR primers used in this  study.  Arrows indicate 
the direction and the relative size of the primer. rhlE gene was amplified using 
ISRH01 and ISRH02 (green) primers and inserted into pET28a vector.  ISRHV01 
and ISRHV02 (purple) carry homologous flanking arms containing 50bp of 
upstream and downstream regions of rhlE gene and were used to construct 
knockout strains. ISRH03 (blue) was used for sequencing and confirmation of 
rhlE konckouts. ISRHK02 (red) carries sequence for V5 epitope.  
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Table 3:  Strains used in the study.  

 

*streptomycin   ΔKanamycin    # Chloroamphenicol    ΦAmpicilin 

 

Name Parent strain/ 
Gene(s) deleted  

 

Resistance  Comments 

E.coli 
MG1665 

Wild type - - 

BL21(DE3) 
 

E.coli  F– ompT gal 
dcm lon hsdSB (rB

- 
mB) λ(DE3 [lacI 
lacUV5-T7 gene 1 
ind1 sam7 nin5]) 

- Carries T7 RNA polymerase 
gene under UVlac promoter 
and lacI 

BL21(DE3) BL21(DE3)/ 
pMIS20201 

kanΔ Expresses His-tagged RhlE 

E.coli 
Top10 

F- mcrA ∆(mrr-hsd 
RMS-mcrBC) 
φ80lac Z∆M15 
∆lacX74 recA 
araD139 ∆ (araleu) 
7697 galU galK 
rpsL (StrR) endA1 
nupG 

Strep* - 

IR001 E.coli Top10/ ∆hfq KanΔ Shows slow growth phenotype 
in LB at 37oC 

IR002 E.coli Top10/ ∆rhlE Cam# No obvious growth defect 
compared to wt 

IR003 E.coli Top10/ 
∆rhlE/ ∆hfq 

KanΔ/Cam# Shows slow growth phenotype 
in LB at 37oC as ∆hfq does 

IRV002 IR002 contains  
pMISV20201 

KanΔ/Cam# 
AmpΦ 

No obvious growth defect 
compared to wt 
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Table 4:  Plasmids constructed for this study. 

Name Parent 
plasmid 

Resistance  Restriction 
sites 

Size 
(bp) 

Comments 

pMIS20201 pET28a Kan Nde1/HindIII 6671 N-terminal 
His tag 

pMISV20201 pBAD24 Amp EcoR1/HindIII 5949 C-terminal V5 
tag 

 

Effect of rhlE and hfq on growth under stress condi tions  

∆hfq, ∆rhlE and ∆rhlE/∆hfq strains were subcultured from an overnight 

culture and cells were grown to mid log phase (OD600~0.4-0.6). Cells were diluted 

into fresh pre-incubated LB with appropriate antibiotic(s) (3 from each strain) to 

have the initial OD600 ~ 0.02 (time = 0). Cells were stressed by the 

supplementation of 0.25%,0.5%, 0.75% or 1% α-methyl glucose for sugar stress, 

60 µM H2O2 for oxidative stress or  0.5 M NaCl for osmotic pressure to the 

medium. Growth was followed by measuring OD600 every hour. To induce cold 

shock or heat shock conditions, cells were grown at 30oC or 42oC respectively. 

The log of OD600 vs time (h) was plotted for the log phase of the growth curve 

and the growth rate (k) was determined by the slope. Doubling time for each 

strain was calculated by µ= log (2/k). Mean doubling time of two or more 

independent trials were taken into account for the analysis. Data were analyzed 

statistically using student’s t-test to determine if there is a significant difference 

between the doubling times. 
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Expression and purification of RhlE-His  

BL-21(DE3) cells containing pMIS20201 were grown to OD600~0.4 and 

induced with 1 mM IPTG for 3 hours at 37oC. Purification procedure was 

modeled after that of Bizerbard et al. in 2004. Cells were harvested, resuspended 

in RhlE binding buffer (300 mM KCl, 10 mM HEPES and 10 mM Immidazole) and 

half of EDTA-free protease inhibitor cocktail tablet (Roche) was added per 1 L of 

culture. Lysate was prepared by sonication of cells on ice followed by 

centrifugation at 15,000 g for 30 min at 4°C. The sup ernatant was filtered through 

0.2 µm filter (PAL life sciences) and the filtrate was loaded on a Hi-Tap Chelating 

Ni-column charged with 100 mM Ni2+. Extensive washings with RhlE wash buffer 

I (300 mM KCl, 10 mM HEPES and 50 mM Imidazole) was carried out to remove 

non-specific binding followed by additional washing steps with RhlE wash buffer 

II (300 mM KCl, 10 mM HEPES and 1 M urea) and RhlE wash buffer III (300 mM 

KCl, 10 mM HEPES and 1 M KCl). His-tagged protein was eluted using RhlE 

elution buffer (300 mM KCl, 10 mM HEPES and 300 mM Imidazole). Protein was 

eluted with minute amounts of contaminant proteins. To remove the contaminant 

proteins, FPLC sizing column was used. Pre-equilibration of the column was 

done with RhlE binding buffer without Imidazole. FPLC elution fractions were 

passed through a second Ni2+ column to concentrate the protein, dialyzed 

against RhlE storage buffer (75 mM KCl, 10 mM Hepes pH 7.5, 0.1 mM EDTA, 1 

mM DTT) and the concentration was determined by absorbance at 280 nm. 
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RNase Test  

To check for the RNase contaminations in the purified protein, RhlE (0.5 

µM) was mixed with 0.1 µM DsrA, incubated for 4 hours at 37oC, and visualized 

on a denaturing PAGE (10%) gel. No significant degradation of RNA was 

observed.  

 

Determination of activity of RhlE and in vitro ATPase assays 

To determine the activity of the protein, ATPase assay was employed. 

ATPase activity was measured using lactate dehydrogenase/pyruvate kinase 

coupled enzyme assay. NADH depletion was monitored by decrease in 

absorbance at 340 nm. The concentrations used in the assay were as follows 

(45).  

Table 5:   ATP assay components and their concentrations. 

Component  Concentration (stock)  Concentration 
Pyruvate kinase 265 U/mL 10 U/mL 
LDH 387 U/mL 20 U/mL 
ATP 100 mM 1.25 mM 
MgCl2 25 mM 0.5 mM 
PEP 5 mM 200 µM 
NADH 10 mM 100 µM 
RhlE 7.5 µM 0.3 – 0.5 µM 
Assay Buffer 75 mM KCl, 10 mM 75 mM KCl, 10 mM 
 

Spectrometric measurements were made by UV-Vis 8453 

spectrophotometer (Agilent). Reaction time was 5 min. Poly A, is known to be a 

strong stimulator of RhlE (45). A18 was used to check the activity of purified 
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protein. DsrA, OxyS and fhlA were used as RNA components in in vitro ATPase 

assays and the effect of Hfq on RhlE was tested by adding Hfq. This experiment 

was done at two different RNA concentrations (40 nM-600 nM) in the precense of 

0 nM and 1000 nM Hfq. A reaction which excludes RhlE was considered as 

background. Spectroscopic data were analyzed using Kaleidagraph software.  

 

Co-immunoprecipitation 

 ∆rhlE and IRV 002 were grown to mid log phase and IRV 002 was 

induced by 0.01% arabinose. Total protein extracts were made by sonication of 

cells in lysis buffer, followed by centrifugation at 15,000 rpm at 4oC for 30 min. 

Anti-hfq antibody (1/10000) was pre-incubated with Protein A dynabeads for 30 

min at 25oC and the cell lysates were mixed with the anti-hfq bound Protein A 

beads. Mixtures were rotated for overnight at 4oC. Following incubation, beads 

were extensively washed with 1X PBS buffer with 0.02% Tween 20, transferred 

to a new tube, mixed with SDS-gel loading buffer and boiled for 45 min. Eluted 

proteins were run on a SDS-PAGE gel, transferred to a nitrocellulose membrane 

at 90V, 30mA for overnight and were probed with anti-V5 anti body.  
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CHAPTER THREE 

RESULTS 

 

rhlE deletion does not affect the growth of wild type E.coli 

To test the effect of RhlE on E.coli growth, wt, ∆rhlE, ∆hfq, and ∆hfq/∆rhlE 

cells were grown in LB broth at 37oC. The growth of ∆rhlE was compared to that 

of the wild type and the growth of ∆hfq/∆rhlE was compared to that of the ∆hfq. 

Hfq mutant strains show multiple growth defects including slow growth rates even 

in rich media (24). As expected, hfq knockouts showed decreased growth rates 

at all temperatures and stress conditions used (Figure 8). Consistent with the 

literature ∆rhlE showed no significant growth defect at 37oC (56). Furthermore, 

rhlE deletion did not affect the slow growth rate of ∆hfq. 

 

∆hfq/∆rhlE did not exhibit a significant growth difference fr om ∆hfq under 

cold shock, heat shock or osmotic pressure 

Hfq mediates sRNA–mRNA interactions in response to regulatory signals 

which are stimulated by high or low temperatures, osmolarity, pH changes, 

starvation or non-metabolizable nutrients and chemicals that produce reactive 

oxygen species and helps bacteria to adapt to extreme environmental conditions 

(11,57). In order to determine the effect of rhlE in stress-dependent regulatory 

pathways, the growth of ∆rhlE was compared to that of the wt and the growth of 
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∆hfq/∆rhlE was compared to that of the ∆hfq under different stress conditions 

(cold shock, heat shock, osmolarity, sugar stress and oxidative stress).  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

37oC (LB)  

Figure 8 : Effect of RhlE and Hfq on growth of E.coli at 37oC. Wt, ∆rhlE, 
∆hfq, and ∆hfq/∆rhlE were grown in LB broth at 37oC. Cells grown to mid log 
phase were diluted into fresh pre-incubated LB to have the initial OD600~ 0.02 
(time = 0). Growth was followed by measuring OD600 every hour. Each data 
point represents the average of three independent OD600 values in which 
triplicate samples were measured. Error bars represent the standard deviation 
of three OD values. 
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Previous work in our lab identified RhlE as a component of DsrA-Hfq and 

SgrS-Hfq RNP complexes. Under the cold shock condition, which is triggered by 

low temperatures, DsrA sRNA regulates the expression of multiple mRNAs in an 

Hfq dependent manner (58). Therefore it was hypothesized that RhlE may play a 

role in DsrA dependent cold shock responses. To test this hypothesis, wt, ∆rhlE, 

∆hfq and ∆hfq/∆rhlE cells were grown at 30oC. However, a significant effect of 

rhlE deletion on growth rates of wt and ∆hfq was not observed (Figure 9). 

To compare the growth of wt, ∆rhlE, ∆hfq and ∆hfq/∆rhlE strains under 

osmotic pressure, 0.5 M NaCl was added to the medium and cultures were 

grown at 37oC. The data did not show a statistically significant difference 

(p>0.05) in doubling times of ∆rhlE compared to wt and ∆hfq/∆rhlE compared to 

∆hfq (Figure 10). Further the deletion of rhlE did not significantly affect the growth 

rate of ∆hfq/∆rhlE than hfq mutants under the heat shock (42oC) (Data not 

shown). 
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Figure 9: Effects of RhlE and Hfq on E.coli growth at 30 oC. rhlE deletion does 
not show a significant effect on the growth of wt and ∆hfq. (A) Wt, ∆hfq, ∆rhlE 
and ∆rhlE/∆hfq strains grown to mid log phase (OD600~0.4-0.6) were diluted into 
fresh pre-incubated LB to have the initial OD600 ~ 0.02 (time = 0). To induce cold 
shock, cells were grown at 30oC. The growth was followed by measuring OD600 

every hour. Each data point represents the average of three independent OD600 

values in which triplicate samples were measured. (B) Each column represents 
the mean doubling time of two independent experiments. Error bars indicate the 
standard errors of doubling times 
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Figure 10: Effects of RhlE and Hfq on E.coli growth under osmotic 
pressure. Wt, ∆hfq, ∆rhlE and ∆rhlE/∆hfq strains grown to mid log phase 
(OD600~0.4-0.6) were diluted into fresh pre-incubated LB to have the initial 
OD600~ 0.02 (time = 0). To induce osmotic stress, media were supplemented with 
0.5M NaCl. The growth was followed by measuring OD600 every hour. (A) Each 
data point represents the average of three independent OD600 values in which 
triplicate samples were measured. (B) Each column represents the mean 
doubling time of three independent experiments. Error bars indicate the standard 
errors of doubling times.  
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∆hfq/∆rhlE is able to cope with sugar phosphate stress 

RhlE was identified as a component of the SgrS-Hfq RNP complex. SgrS 

base pairing to ptsG mRNA leads to translational repression followed by the 

degradation of RNAs by RNase E which in turn inhibits the synthesis of the 

glucose transporter, PtsG- IICBGlc and allows the organism to recover from 

sugar stress (16,37,38). It was proposed that Hfq makes protein-protein 

interactions with the RNA degradation machinery and may direct the sRNA-

mRNA complex for degradation (11,41). Further, it was reported that RhlE 

interacts with RNase E (55). Therefore it is reasonable to hypothesize that RhlE 

might have a specific role in the Hfq directed degradation of SgrS-ptsG RNA 

complex. To test if rhlE is involved in this regulation, the growth phenotypes of 

the single and double knockouts in the presence of non-metabolizable α-methyl-

glucose were compared. It is known that α-methyl-glucose-6-phosphate is highly 

toxic to the cells and cells with reduced tolerance to nonmetabolizable sugars 

show growth inhibition and cell lysis. Therefore, for initial experiments, different 

concentrations (0.25%,0.5%,0.75% and 1%) of α-methyl-glucose were used. 

Post induction, this study was performed over 8 hours with OD600 measurements 

collected hourly.  

In this experiment, a strong inhibition of the growth in all strains was 

observed after 4 hours of induction. Cells grown in LB without α-methyl-glucose 

and in LB supplemented with normal glucose were used as controls. 

Interestingly, ∆rhlE/∆hfq cells showed recovery of the growth after 6 hours while 
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∆hfq was unable to recover from the stress throughout the experiment time 

course. (Except at 1% sugar concentration. All four strains showed slow growth 

at 1% α-methyl-glucose. We suspect that 1% concentration caused cell lysis) 

(Data not shown). 

α-methyl-glucose (0.5%) was selected for further studies in which the 

experiment was carried out for 15 hours after the induction. OD600 was measured 

every two hour. Three growth trials of wt, ∆rhlE, ∆hfq and ∆rhlE/∆hfq were 

performed in triplicate. A two stage inhibition pattern throughout the experiment 

(first after 4 hours and second after 8 hours) was observed and was reproducible 

(Figure 11).    

The current understanding of the SgrS-ptsG system is insufficient in 

explaining the observed growth pattern. Because all the cell types, except ∆hfq, 

followed the same growth pattern, this seems to be an independent event from 

rhlE deletion. One possible explanation for this observed growth pattern is the 

existence of a selection process that outcompetes individuals incapable of 

adaptation. After 12 hours of induction all four strains started to show recovered 

growth. It can be speculated that, by this time the cells have evolved 

mechanisms to metabolize α-methyl glucose, probably by new enzymes which 

can remove the methyl group at the anomeric carbon leading α-methyl glucose 

enter into the glycolytic pathway. However, ∆rhlE/∆hfq showed an increased 

growth rate compared to ∆hfq which indicates a possible involvement of rhlE on 

sRNA-Hfq mediated gene regulation under glucose-phosphate stress.  
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A recent finding suggests that SgrS is not simply a non coding RNA, but it 

encodes for a small prote

additional complexity to the system as SgrT is also involved in maintaining the 

sugar phosphate tolerance by a mechanism dis

characterization of the system is required

regulatory mechanism and the role of RhlE in this pathway.

 

0.5% Alpha

Figure 11: Effects of RhlE and Hfq on 
stress. Wt, ∆hfq, ∆rhlE 
(OD600~0.4-0.6) were diluted into fresh pre
OD600~ 0.02 (time = 0). To induce sugar stress, media were supplemented 
0.5% α-methyl-glucose. The growth was followed by measuring 
hour. Each data point represents the
in which triplicate samples were measured.
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A recent finding suggests that SgrS is not simply a non coding RNA, but it 

encodes for a small protein SgrT (43 amino acids) (59). This finding gives an 

additional complexity to the system as SgrT is also involved in maintaining the 

sugar phosphate tolerance by a mechanism distinct from SgrS (59

characterization of the system is required in order to understand the underly

regulatory mechanism and the role of RhlE in this pathway. 

0.5% Alpha -methyl glucose 

Effects of RhlE and Hfq on E.coli growth under sugar
rhlE and ∆rhlE/∆hfq strains grown to mid log phase 
diluted into fresh pre-incubated LB to have the initial 

To induce sugar stress, media were supplemented 
glucose. The growth was followed by measuring OD

hour. Each data point represents the average of three independent OD
in which triplicate samples were measured. 

A recent finding suggests that SgrS is not simply a non coding RNA, but it 

. This finding gives an 

additional complexity to the system as SgrT is also involved in maintaining the 

59). Further 

to understand the underlying 

 

growth under sugar -phosphate 
strains grown to mid log phase 

LB to have the initial 
To induce sugar stress, media were supplemented with 

OD600 every 
OD600 values 
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rhlE deletion partially restores the slow growth phenot ype of ∆hfq under 
oxidative stress 

Defense mechanisms against peroxide-induced oxidative damage partially 

rely on OxyS-dependent gene regulatory pathways (18).  Although Hfq has been 

characterized as a key player in this regulation, how Hfq acts in this facilitation 

process is unclear. To test whether RhlE has a role in these regulatory pathways, 

the growth of ∆rhlE and ∆hfq/∆rhlE was compared with that of wt and ∆hfq.  If 

there is a synergistic effect of RhlE and Hfq proteins in regulating gene 

expression under oxidative stress, it might be shown in the growth curves as a 

deviation from the normal growth pattern. Three independent growth trials were 

performed in triplicate and mean doubling time for each strain was calculated. 

Interestingly, when oxidative stress was induced by the addition of 60 µM H2O2, 

rhlE deletion partially restored the slow-growth phenotype of ∆hfq (Figure 12). 

Statistical analysis of data revealed that the deletion of rhlE affects the growth 

rate of ∆hfq significantly (p<0.05). 

The ability of ∆rhlE/∆hfq double knockouts to recover the slow growth 

phenotype of ∆hfq suggests that RhlE may have a role in gene regulation under 

oxidative stress conditions via direct or indirect association with Hfq. To test this, 

a set of in vitro reactions were carried out using the recombinant RhlE protein. 
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Figure 12: Effects of RhlE and Hfq on E.coli growth under oxidative stress.  
Wt, ∆hfq, ∆rhlE and ∆rhlE/∆hfq strains grown to mid log phase (OD600~0.4-0.6) 
were diluted into fresh pre-incubated LB to have the initial OD600 ~ 0.02 (time = 
0). To induce oxidative stress, media were supplemented with 60µM H2O2. The 
growth was followed by measuring OD600 every hour. (A) Each data point 
represents the average of three independent OD600 values in which triplicate 
samples were measured. (B) Each column represents the mean doubling time of 
three independent experiments. Error bars indicate the standard errors of 
doubling times. * Indicates p <0.05. 
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Cloning, overexpression and purification of RhlE

The rhlE gene was 

vector in frame with N-terminal His 

the protein was overexpressed by the addition of IPTG. His

purified using Hi-Trap Ni2+

The concentration was determined by the 

the purified RhlE was free of nuclease contaminations,

DsrA for 5 hours and analyzed on denaturing PAGE gel. No degradation o

RNA was observed (Figure
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Figure 13: Purification of RhlE. 
RhlE (0.5µM) was incubated with DsrA, for 4 hours at 37
a denaturing PAGE (10%) gel. No significant 
observed. 
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Cloning, overexpression and purification of RhlE  

gene was PCR amplified and cloned into pET28a expression 

terminal His tag, transformed into BL-21(DE3) cells and 

the protein was overexpressed by the addition of IPTG. His-tagged protein was 

2+ column, followed by FPLC purification (F

oncentration was determined by the absorbance at 280 nm. To determine if 

the purified RhlE was free of nuclease contaminations, RhlE was incubated with 

DsrA for 5 hours and analyzed on denaturing PAGE gel. No degradation o

igure 13 B).  
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Purification of RhlE. (A) Purified RhlE protein. (B) RNase test. 
µM) was incubated with DsrA, for 4 hours at 37oC, and analyzed on 

a denaturing PAGE (10%) gel. No significant degradation of RNA was 

cloned into pET28a expression 

21(DE3) cells and 

tagged protein was 

(Figure 13 A). 

To determine if 

RhlE was incubated with 

DsrA for 5 hours and analyzed on denaturing PAGE gel. No degradation of the 

(A) Purified RhlE protein. (B) RNase test. 
C, and analyzed on 

degradation of RNA was 
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Isolated protein showed stimulated activity in the presence of A 18 RNA 

 To determine whether the protein was active, lactate 

dehydrogenase/pyruvate kinase coupled enzyme ATPase assay was employed 

(45). NADH depletion was monitored by the decrease in absorbance at 340 nm 

in the presence of A18 RNA. Poly A has been identified as a good stimulator of 

RhlE (45). Consistent with the literature, RhlE showed stimulated activity in the 

presence of A18, yielding a mean rate of 3.5 (± 0.1) x 10-3 s-1 (Figure 14), and 

indicated that our purification yielded an active protein.  
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Figure 14: Determination of ATPase activity of RhlE  in the presence of A 18. 
ATPase activity of RhlE was measured using lactate dehydrogenase/pyruvate 
kinase coupled enzyme assay in the presence of A18 and absence of RNA 
substrates. NADH depletion was monitored by decrease in absorbance at 340 
nm. The figure represents the best fit of two independent trials. RhlE showed 
stimulated activity in the presence of A18 yielding a mean rate of 3.5 (± 0.1) x 10-3 
s-1. In the absence of an RNA substrate rate was 1.4 (± 0.1) x 10-4 s-1. Blank 
without RhlE was considered as the background and was subtracted from the 
measurements.  
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fhlA and OxyS stimulate RhlE ATPase activity  

OxyS base pairing to fhlA inhibits the translation of the activator FhlA 

under oxidative stress (18).  The finding that ∆rhlE/∆hfq showed partial recovery 

from oxidative stress compared to the ∆hfq knockouts suggests that fhlA and 

OxyS may be possible substrates for RhlE in vivo. To test this hypothesis, 

ATPase activity of RhlE was monitored in the presence of these RNA substrates. 

Recent work in our lab identified fhlA220 (extended upstream region) as a better 

construct than previously characterized fhlA53 (60) as it forms a more stable 

ternary complex with OxyS and Hfq (29). Therefore, fhlA220 and OxyS were 

used as RNA substrates in the ATPase assay.  

Interestingly, fhlA220 stimulated RhlE ATPase activity with a mean rate of 

3.6 (±0.1) X 10-3 s-1, a similar rate as what was observed for A18 (Figure 15). This 

was approximately twenty five-fold faster than the rate observed for RhlE in the 

absence of an RNA substrate (1.4 (± 0.1) x 10-4 s-1). Addition of OxyS also 

stimulated RhlE activity with a mean rate of 1.30 (±0.03) X 10-3 s-1, nearly ten-fold 

faster rate than RhlE alone. Interestingly, addition of DsrA did not stimulate the 

ATPase activity of RhlE significantly.  

 

 

 

 

 



www.manaraa.com

42 

 

 

 

-RhlE
+RhlE -RNA
+RhlE+ FhlA220
+RhlE + OxyS
+RhlE+DsrA

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 50 100 150 200

 

  

 

  
 
 
 
 
 
 
 
 
 
 
 
Figure 15: LDH/PK coupled enzyme assay for RhlE in the presence of 
fhlA220, OxyS and DsrA.  ATPase activity of RhlE was measured using lactate 
dehydrogenase/pyruvate kinase coupled enzyme assay in the presence of 600 
nM fhlA220 (green), OxyS (pink), DsrA (purple) and absence of RNA substrates 
(red). RhlE concentration used was 0.5 µM. NADH depletion was monitored by 
decrease in absorbance at 340nm. The figure represents the best fit of two 
independent trials. The mean initial rates were; for fhlA = 3.6 (±0.1) X 10-3 s-1, 
OxyS = 1.30 (±0.03) X 10-3 s-1, and DsrA =  3.0 (±0.1) X 10-4 s-1.   
 

This finding that OxyS but not DsrA stimulates the RhlE ATPase activity 

indicates that RhlE may preferentially act on selected RNA substrates in vivo. 

Furthermore, these findings suggest a role for RhlE as a potential participant in 

OxyS-mediated fhlA repression under oxidative stress. 
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Effect of Hfq on RhlE ATPase activity  

Hfq facilitates sRNA-mediated regulatory processes under stress 

conditions (11). In the present study, RhlE was found to be involved in sRNA-

mediated regulatory processes under certain stress conditions. To test the effect 

of Hfq on RhlE’s ATPase activity, the assays were done in the presence of 0 and 

1 µM Hfq at two different RNA concentrations (40 nM and 600 nM). Previous 

work in our lab found that KD for Hfq reaction with fhlA220 is 15 nM. Therefore, in 

the presence of excess Hfq concentrations, one can drive fhlA to form Hfq-fhlA 

complex. Hence, Hfq-fhlA complex acts as the substrate for RhlE contributing 

predominantly to the overall rate of the reaction. The results shown in the Figure 

16 show the influence of Hfq on the rate of conversion of ATP to ADP by RhlE in 

the presence of fhlA220. At 40 nM fhlA concentration, the presence of Hfq did not 

make a significant change in the rate. However, at 600 nM fhlA and 1000 nM 

Hfq, where the concentrations are 10-fold greater than KD, the rate was 

accelerated, indicating that Hfq can act as a stimulator for the reaction.  
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Hfq does not physically interact with RhlE 

The finding that Hfq has an effect on RhlE ATPase activity leads to the 

hypothesis that these two proteins interact with each other to carry out the 

regulatory events efficiently. To investigate whether there is a physical interaction 

between Hfq and RhlE, co-immunoprecipitation experiments were carried out 

using V5 epitope-tagged RhlE (Figure 17). V5 epitope-tagged rhlE was cloned 

into pBAD24 under arabinose inducible promoter and expressed in ∆rhlE 

(IRV002). IRV002 was inoculated into two fresh cultures and grown to mid log 

phase. Arabinose (0.01%) was added into both cultures to induce the expression 

of the protein and 60µM H2O2 was added to one culture to induce the oxidative 

stress. ∆rhlE and IRV 002 uninduced were considered as controls.  Lysates (L) of  

  fhlA 40 nM               fhlA 600 nM    
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Figure 16: Effect of Hfq on RhlE ATPase activity. ATPase assays were done 
in the presence of 0 nM and 1000 nM Hfq at two different concentrations of fhlA 
(40 nM and 600 nM). 0.3 µM RhlE was used for the assays. Bars represent the 
mean rate of two independent experiments. 
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∆rhlE, IRV 002 uninduced, IRV 002 induced with 0.01% arabinose and IRV 002 

induced with 0.01% arabinose and 60µM H2O2 were incubated with anti-Hfq 

antibody coated-Dynabeads to pull out Hfq-associated protein complexes. To 

separate the protein complexes attached to the Dynabeads, a magnetic field was 

applied and the supernatant (S) was saved for the analysis. Protein complexes 

attached to the Dynabeads were eluted and run on a SDS-PAGE gel, transferred 

to a nitrocellulose membrane and were probed with anti-V5 anti body to detect 

RhlE-V5. If RhlE has a direct interaction with Hfq, a band corresponding to RhlE-

V5 should appear on western blot. 

RhlE-V5 was readily induced by the addition of 0.01% arabinose (Figure 

17, panels (C) and (D) (top) and lighted up in the lysate (L) and supernatant (S) 

lanes of the western blots (Figure 17, panels (C) and (D) bottom). Here we 

expected to see a single band corresponding to RhlE-V5 at 50 kDa. However, 

two bands were observed in the lysates and supernatants of induced samples 

(Figure 17, panels (C) and (D) bottom). This may be due to the non-specific 

binding of anti V5 antibody to a protein other than RhlE.   

Highly intense bands appeared in the western blot which were probably 

corresponding to the byproducts of the antibodies and the protein A. Surprisingly, 

a band near 50kDa was observed in SDS gels in the product lanes of IRV002 

induced with arabinose and IRV002 induced with arabinose and stressed with 60 

µM H2O2, which did not appear in the western blot (pellet lanes of panel (C) and 

(D) (top).  However, Hfq did not co-immunoprecipitate RhlE.  
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Figure 17: Co-immunoprecipitation of Hfq and RhlE . To investigate whether 
there is a physical interaction between Hfq and RhlE, rhlE gene was amplified 
with a reverse primer that carries sequence for v5 epitope and was cloned into 
pBAD24 under arabinose inducible promoter and expressed in ∆rhlE. Lysates of 
∆rhlE, IRV 002 uninduced, IRV 002 induced with 0.01% arabinose and IRV 002 
induced with 0.01% arabinose and 60µM H2O2 were analyzed. To pull out Hfq-
protein complexes anti-Hfq antibody was used and to detect RhlE anti-V5 
antibody was used. Top- SDS gel. Bottom- Western blots. L-Lysate, S-
Supernatant, P-pellet and M-Marker. (A) ∆rhlE, (B) uninduced IRV 002, (C) IRV 
002 induced with 0.01% arabinose, (D) IRV 002 induced with 0.01% arabinose 
and  60µM H2O2. 
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DEAD-box helicases recruit protein partners through their N-terminal or C 

terminal extensions (47,52). To test whether the C-terminal V5 tag has any 

effect, co-immunoprecipitation experiments were performed with N-terminal His-

tagged RhlE. To pull out Hfq-protein complexes anti-Hfq antibodies were used 

and anti-His antibodies were used for detection of RhlE-His. No interaction 

between the two proteins was seen (Data not shown). 
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CHAPTER FOUR 

DISCUSSION 

 

In an attempt to characterize the role of RhlE and Hfq on sRNA-mediated 

gene regulation, ∆rhlE and ∆rhlE/∆hfq strains were successfully constructed and 

examined under different stress conditions. One of the major findings in this 

study is that ∆rhlE/∆hfq shows a recovery in the growth compared to that of the 

∆hfq in the presence of hydrogen peroxide, suggesting a potential role for RhlE 

under oxidative stress. Defense mechanisms against peroxide-induced oxidative 

damage partially rely on OxyS-dependent gene regulatory pathways. OxyS base 

pairing to fhlA inhibits the translation of the activator FhlA allowing the organism 

to recover from oxidative stress (18). In support of the above suggestion that 

RhlE may play a role in Hfq-dependent OxyS-mediated gene regulation, the 

present study identified fhlA and OxyS as substrates for RhlE. The observation 

that fhlA220 stimulates ATPase activity of RhlE by 25-fold relative to RhlE alone 

can be explained by the recent finding that fhlA220 is a highly structured RNA 

(Figure 18) (29). It has been found that some DEAD-box helicases load directly 

on the double stranded regions of RNAs with the aid of neighboring single 

stranded regions (49,50). Having many short double-stranded regions separated 

by single stranded loop structures, fhlA220 has high potential to stimulate RhlE. 

Furthermore, at a given time, it may be targeted by more than one RhlE, which 

can lead to a rapid rate of ATP consumption. Thus, RhlE may be involved in 
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unwinding of duplex regions of fhlA220 in order to make structural changes in the 

overall structure.  

                                                                    

                     

 

 

 

             fhlA220                                                           rpoS              

                                                            

                                

 

 

                       OxyS                                                           DsrA 

Figure 18: Schematic representation of RNA structur es relevant for the 
present study. RNA structures are drawn from 5’ end to 3’ end. Hfq binding 
regions are colored in orange. OxyS base pairs with fhlA (28,34,59) and DsrA 
base pairs with rpoS (27). The mRNAs are italicised. mRNA-sRNA interaction 
regions are colored in purple.    

 

Hfq is a homohexameric protein that lacks ATPase activity. Since Hfq is 

known to be involved in structural rearrangements of mRNAs and sRNAs, it was 

speculated that Hfq could be coupled with a helicase. A recent paper identified 

CsdA which is another E.coli DEAD-box helicase, as a required factor for Hfq-

mediated rpoS regulation by DsrA (61). In this paper, Resch et al. put forward the 
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idea that CsdA unwinds the rpoS translational inhibitory structure, allowing Hfq-

bound DsrA to pair with rpoS leader region to release the ribosome binding site 

under the cold shock conditions. They also suggest that CsdA may be involved in 

recycling of Hfq by rearranging the RNP complex. These findings have clear 

implications on the present study. Since the growth of ∆rhlE/∆hfq was sensitive 

to oxidative stress and in vitro findings of fhlA and OxyS being substrates of RhlE 

imply a potential role for RhlE in E.coli oxidative stress pathways. Having 

helicase activity, RhlE may resolve OxyS and fhlA secondary structures thus, 

allowing Hfq to facilitate base-paring of two RNAs or it may rearrange the OxyS-

Hfq-fhlA complex to recycle Hfq. It is also possible that, having an interaction 

surface for RNaseE, RhlE may direct the OxyS-fhlA complex to be degraded by 

the degradosome. Although the findings in the present study are insufficient to 

elucidate the exact mechanism of RhlE action in this regulation, it is clear that 

RhlE has implications in the OxyS-mediated fhlA repression.  

RhlE was identified as a component in the Hfq-DsrA complex (Lee and 

Feig unpublished data). DsrA base pairs with rpoS and activates the translation 

of RpoS under the cold shock (29). However, deletion of rhlE did not change the 

growth pattern of wt and ∆hfq under cold shock. Further DsrA did not stimulate 

the in vitro ATPase activity significantly indicating that it might not be a 

preferential substrate for RhlE in vivo. The observations can be justified with the 

recent finding that CsdA involves in regulation of DsrA-mediated rpoS activation 

(60). Under these circumstances, RhlE may not have a role at low temperatures; 
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rather, it may be the helicase partner of Hfq under oxidative and sugar stresses.  

These findings also imply that E.coli DEAD-box helicases may have some 

degree of specificity for RNAs in vivo which may be determined by the sequence 

or the structure of the RNA substrates. Furthermore, since the cold shock 

regulatory mechanisms lead to active translation of RpoS, we do not expect RhlE 

to be involved in this regulation at degradation level. However, the present study 

did not characterize rpoS (which is regulated by DsrA) as a substrate for RhlE. 

As Figure 18 shows the rpoS leader sequence is also a structured RNA which 

may be a potential substrate for RhlE.  

Another interesting finding from this study is that Hfq, at its high 

concentrations, can act as a stimulator for RhlE activity by accelerating the rate 

of ATP conversion to ADP. Hfq is an abundant cellular protein that participates in 

regulatory processes by facilitating sRNA-mRNA paring under stress conditions 

(11). It was found that all DEAD-box helicases including RhlE show poor 

enzymatic activities in vitro (44). This was explained by the fact that DEAD-box 

helicases recruit other proteins to gain high processivity in vivo (45,56). 

Therefore, it can be speculated that while enhancing RhlE’s enzymatic activity, 

Hfq may be benefited from this RNA helicase to mediate its regulatory roles. 

However, co-immunoprecipitation experiments failed to identify a direct 

interaction between RhlE and Hfq. Possible explanation for this could be that, 

RhlE and Hfq may interact with each other via its RNA substrates or the 

interaction may be transient.  



www.manaraa.com

52 

 

 

 

Another key observation of this study is that ∆rhlE/∆hfq exhibits rescued 

growth over ∆hfq under sugar stress induced by α-methyl glucose. E.coli 

overcomes sugar phosphate stress by two mechanisms. First, SgrS base pairs to 

ptsG mRNA that leads to translational repression followed by the degradation of 

RNAs by RNaseE, which in turn inhibits the synthesis of the glucose transporter, 

PtsG-IICBGlc allowing the organism to recover from sugar stress (16,37,38). 

Second, SgrT protein encoded within sgrS maintains the sugar phosphate 

tolerance by a mechanism distinct from SgrS. It is also known that either 

mechanism is sufficient for the recovery (59). SgrS has been characterized as a 

highly structured sRNA (15), thus it is essential to resolve the secondary 

structures prior to the base-paring with ptsG mRNA. Because RhlE was identified 

as a part of the SgrS-Hfq complex and since Hfq is known to interact with the 

degradosome, we hypothesized that RhlE may have a role in Hfq-directed SgrS-

ptsG degradation. In our experiments, a recovery of ∆rhlE/∆hfq in the presence 

of α-methyl glucose was observed, indicating that RhlE has a role in maintaining 

sugar phosphate stress. A two stage inhibition pattern throughout the experiment 

time course was observed for all four strains (wt, ∆rhlE, ∆hfq and ∆rhlE/∆hfq) 

which may be a result of a selection process that outcompetes individuals 

incapable of adaptation. After 12 hours from induction, a recovery of the growth 

was observed for all four strains. It can be speculated that, by this time the cells 

have evolved mechanisms to metabolize α-methyl glucose, probably by new 

enzymes which can remove the methyl group at the anomeric carbon leading α-
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methyl glucose enter into the glycolytic pathway. The observed growth patterns 

imply that bacteria achieve sugar-phosphate tolerance by a more complex 

mechanism(s), and there may be more than one independent or inter-connected 

regulatory pathway. Further characterization of the system is required to 

understand the underlying regulatory mechanism and the role of RhlE in these 

regulatory events. 

In conclusion, the ability of ∆rhlE/∆hfq to recover from oxidative stress and 

the identification of fhlA and OxyS as substrates of RhlE suggests that RhlE may 

have a role in Hfq-sRNA mediated gene regulation under oxidative stress. High 

concentrations of Hfq accelerated the ATPase activity of RhlE in the presence of 

fhlA, suggesting that Hfq may act as a stimulator for the enzyme.  ∆rhlE/∆hfq 

also restored the slow growth of ∆hfq in the presence of α-methyl glucose, 

indicating that RhlE and Hfq have a synergistic effect under sugar phosphate 

stress. However, further characterization of this system was not done in this 

study.  Although RhlE was identified in the DsrA-Hfq complex, the observations 

that ∆rhlE/∆hfq showed a similar growth pattern to that of ∆hfq at 30oC and DsrA 

did not stimulate the RhlE ATPase activity demonstrate that RhlE may not have a 

specific role during DsrA-mediated cold shock responses. In an attempt to 

identify any possible interaction of RhlE with Hfq, co-immunoprecipitation 

experiments did not show a physical interaction between the two proteins, 

indicating that RhlE and Hfq do not directly interact with each other to form a 

stable protein complex. 
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In summary, these data show that RhlE has implications in Hfq-dependent 

sRNA-mediated gene regulation under certain stress conditions. To better 

determine the effect of RhlE in sRNA-mediated gene regulation, it is important to 

knock out RhlB, the regular member of DEAD box family helicases found in the 

E.coli degradosome (45). Further ∆rhlE and ∆rhlE/∆hfq knockout strains along 

with the sRNA (OxyS and SgrS) deleted strains will provide a better 

understanding of the role of these proteins on sRNA-dependent pathways. 

Completion of the project will assign a new set of previously unknown cellular 

functions for RhlE. Further, understanding these regulatory pathways would 

contribute to the development of potential antibiotics to eradicate pathogenic 

bacteria. 
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ABSTRACT 
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REGULATION 

by 

ABEYKOON JAYALATH IRESHA SANDEEPANIE RATHNAYAKE 

DECEMBER  2010 

Advisor: Dr. Andrew Feig 

Major: Chemistry 

Degree: Master of Science  

Bacteria are adapted to live in diverse environmental conditions. Thus, 

they show excellent tolerance and response to extreme environmental conditions 

caused by low or high temperatures, high salinity, reactive oxygen species or 

high nutrient concentrations. sRNAs have been identified and characterized as 

cis-acting or trans-acting post-transcriptional regulators in diverse cellular 

processes including virulence and adaptation to environmental stress 

(12,13,15,16). Interactions of sRNAs and target mRNAs result in translational 

repression, translational activation or/and degradation of the target. The majority 

of regulatory small RNAs found in E.coli require the RNA binding protein Hfq to 

perform their roles in gene regulation (11,13,15,16).  

Although Hfq is a central player in sRNA mediated gene regulation, how it 

facilitates these RNA interactions is yet to be discovered. Several studies have 

shown that Hfq makes Hfq-RNP complexes to mediate its regulatory roles 

(11,37,40). Previous work in our lab identified RhlE, as a protein partner in SgrS-



www.manaraa.com

61 

 

 

 

Hfq and DsrA-Hfq RNP complexes. RhlE is an ATP-dependent E.coli DEAD-box 

RNA helicase. In the present study it was hypothesized that Hfq and RhlE have a 

synergistic effect on sRNA-mediated gene regulation. To address this problem, a 

series of in vivo and in vitro experiments was carried out.  

The growth curve analysis of wt, ∆rhlE, ∆hfq and ∆rhlE/∆hfq revealed that 

RhlE has a role in Hfq-dependent sRNA-mediated gene regulation under sugar 

stress and oxidative stress. It was also found that OxyS sRNA, which is 

transcribed under oxidative stress, and its target fhlA mRNA stimulate the 

ATPase activity of RhlE. Furthermore, DsrA was unable to stimulate RhlE, 

suggesting that RhlE may have some degree of specificity for RNAs. Although 

Hfq was shown to stimulate the RhlE ATPase activity in the presence of fhlA, the 

present study did not identify any physical interaction of the two proteins. 

These findings have implications for understanding the mechanisms 

underlying Hfq-dependent sRNA-mediated gene regulation. Complete 

understanding on sRNA mediated gene regulation and the protein components 

that are associated with sRNAs, will allow us to use these regulation processes 

as potential targets for the successful eradication of pathogenic bacteria. 
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